
 1

CS101 Lecture Notes
March 14, 16 2007
Prepared by Mehmet Can Eksi, Canberk Erol, Oguz Kaysi, M. Cem Olcay

Introduction to Class Writing
(Does Not Reflect Class Discussion)

 public class Flight {

 //variables
 private String name;
 private int number;
 private String origin;
 private String destination;

 //constructor
 public Flight(String airlineName,int flightNumber,String flightOrigin,String
destinationCity)
 {
 name=airlineName;
 number=flightNumber;
 origin=flightOrigin;
 destination=destinationCity;
 }
 //methods

 //setter and getter for airline name
 public void setName (String name1){
 name=name1;
 }
 public String getName(){
 return name;
 }

 //setter and getter for flightnumber
 public void setFlightNumber(int value){
 number=value;
 }
 public int getFlightNumber(){
 return number;

 2

 }

 //setter and getter for origin
 public void setOrigin(String place){
 origin=place;
 }
 public String getOrigin(){
 return origin;
 }

 //setter and getter for destination
 public void setDestination(String place1){
 destination=place1;
 }
 public String getDestination(){
 return destination;
 }

 //toString method for returning one line description of the flight
 public String toString(){
 return name+","+(number)+" :from "+(origin)+" to "+(destination);
 }
}

//some exercises on flight class

public class FlightTest {

 public static void main(String[]args){

 //creating two flight objects

 Flight flight1=new Flight("THY",63,"ANKARA","IZMIR");
 Flight flight2=new Flight("AL ITALIA",3445,"ISTANBUL","ROMA");

 //print the flights with the written informations
 System.out.println(flight1);
 System.out.println(flight2);

 //changing the airlinename of flight1 and changing flightnumber of flight2
 flight1.setName("ONUR AIR");
 flight2.setFlightNumber(1888);

 3

 System.out.println(flight1);
 System.out.println(flight2);

 //just print their destinations
 System.out.println(flight1.getDestination());
 System.out.println(flight2.getDestination());

 //changing flight1's all properties
 flight1.setName("PEGASUS");
 flight1.setFlightNumber(1453);
 flight1.setOrigin("HAKKARİ");
 flight1.setDestination("URFA");

 //just print name of new properties of flight1
 System.out.println(flight1.getName());

 //print all new properties of flight1
 System.out.println(flight1.getName()+" "+flight1.getFlightNumber()+"
"+flight1.getOrigin()
 +" "+flight1.getDestination());

 //or just print the object(it will use also toString method)
 System.out.println(flight1);
 }
 }

QUESTIONS

1. Write a class which makes Coffee. We need to set its sugar, cream and
coffee amount. Then we need to mix them and show us how much coffee,
how much sugar, how much cream in it.

 4

Use a constructor with 3 variables in it. Use setcoffeeAmount,
setsugarAmount, setcreamAmount and getcoffeeAmount,
getsugarAmount, getcreamAmount and mix method and also toString
method.

THE OUTPUT SHOULD BE LIKE THAT:
 Coffee 1 includes 5.0 gr coffee 3.0 gr sugar 7.0 gr cream
 Coffee 1 includes 8.0 gr coffee 2.0 gr sugar 10.0 gr cream

 Coffee 1 includes 6.0 gr coffee 3.0 gr sugar 7.0 gr cream
 Coffee 1 includes 8.0 gr coffee 2.0 gr sugar 9.0 gr cream

The mix of two coffee includes 14.0 gr coffee 5.0 gr sugar 16.0 gr ceam

2. What is the difference between global variable and local variable?

3. Why do the most objects have accessor or mutator methods?

4. What are the things which seperate the two different methods? What is

their signature ?

5. What do the variables represent ? What do the methods represent?

6. In classes, why do we use private variables instead of public variables ?

7. Why do we define the listenners as inner classes?

8. Why do not the constructors have any return type?

9. Which steps do we use for writing a GUI ?

10. Write complex number(3 + 5i) class which real and imaginary
part in its constructor. Use setImaginaryPart, setRealPart, getImaginaryPart,

 5

getRealPart methods. And also use addOnto , Complex Conjugate, Complex
add and toString.

THE OUTPUT SHOULD BE LIKE THAT:

Complex 1: 10.0 + 20.0i
Complex 2: 15.0 + 3.0i

Complex 1: 9.0 + 20.0i
Complex 2: 15.0 + 7.0i

Addition: 24.0 + 27.0i

Complex: 24.0 + 27.0i

The Conjuge of Complex: 24.0 + -27.0i

 ANSWERS

1.

public class Coffee
{

 private double coffeeAmount,sugarAmount,creamAmount;

 public Coffee(double coffee,double sugar,double cream)
 {
 coffeeAmount=coffee;
 sugarAmount=sugar;
 creamAmount=cream;
 }
 public void setcoffeeAmount(double amount1)
 {
 coffeeAmount=amount1;
 }
 public void setsugarAmount(double amount2)
 {
 sugarAmount=amount2;
 }
 public void setcreamAmount(double amount3)

 6

 {
 creamAmount=amount3;
 }

 public double getCoffeeAmount()
 {
 return coffeeAmount;
 }
 public double getsugarAmount()
 {
 return sugarAmount;
 }
 public double getcreamAmount()
 {
 return creamAmount;
 }

 public Coffee mix(Coffee other)
 {
 double newcoffeeAmount=coffeeAmount+other.coffeeAmount;
 double newsugarAmount=sugarAmount+other.sugarAmount;
 double newcreamAmount=creamAmount+other.creamAmount;
 Coffee mixture=new
Coffee(newcoffeeAmount,newsugarAmount,newcreamAmount);
 return mixture;
 }

 public String toString()
 {
 String cof=Double.toString(coffeeAmount);
 String sug=Double.toString(sugarAmount);
 String cre=Double.toString(creamAmount);
 String result=(cof+" gr Coffee, "+sug+" gr Sugar, "+cre+" gr
Cream");
 return result;
 }

}

 7

public class CoffeeDriver
{
 public static void main(String[]args)
 {
 Coffee Coffee_1=new Coffee(5,3,7);
 Coffee Coffee_2=new Coffee(8,2,10);
 System.out.println("Coffee 1 includes "+Coffee_1);
 System.out.println("Coffee 2 includes "+Coffee_2);

 Coffee_1.setcoffeeAmount(6);
 Coffee_2.setcreamAmount(9);
 System.out.println("\nCoffee 1 includes "+Coffee_1);
 System.out.println("Coffee 2 includes "+Coffee_2);

 Coffee Coffee_Mixture=new Coffee(1,1,1);
 Coffee_Mixture=Coffee_1.mix(Coffee_2);
 System.out.println("\nThe mixture of two Coffee includes
"+Coffee_Mixture);

 }
}

2. Local variables are removed when their scope ends but global variables
are removed when the program ends.

3. Because accessors and mutator methods allow the client to manage data
in controlled manner.

4. Number of the parameters and their order and methods names. The return
type of the method does not change it.

5. Variables define the state of the object and methods define its behaviour
because we use methods to reach objects and we only make some
interreaction throughout methods we can change objects behaviour by
methods

 8

6. Because public variables allow code external to the class in which the

data is defined to reach in and Access or modify the value of the data.
Therefore instance data should be defined with private visibility. Data that
is declared as private can be accessed only by the methods of the class.
Instance variables should be declared with private visibility to promote
encapsulation

7. Listeners are often defined as inner classes because of the intimate
relationship between the listener and the GUI components.

8. Because they do not behave exactly as a method. They just allocate the
memory. They do not need to send any variable.

9. For creating a Java program that uses a GUI, we must:
a. Instantiate and set up the necessary components.
b. Implement listener classes that define what happens when

particular events occur.
c. Establish the relationship between the listeners and the components

that generate the events of interest.

 10.

public class Complex
{
 private double a,b;

public Complex(double RealPart,double ImaginaryPart)
 {
 a=RealPart;
 b=ImaginaryPart;
 }

 public void setRealPart(double RPart)
 {
 a=RPart;
 }
 public void setImaginaryPart(double IPart)
 {
 b=IPart;

 9

 }

 public double getRealPart()
 {
 return a;
 }
 public double getImaginaryPart()
 {
 return b;
 }

public void addOnto(Complex other)
 {
 a=a+other.a;
 b=b+other.b;
 }

 public Complex Conjugate()
 {
 double na=a,nb=-b;
 Complex newCon=new Complex(na,nb);
 return newCon;
 }
 public Complex add(Complex other)
 {
 double newa=a+other.a;
 double newb=b+other.b;
 Complex newSum=new Complex(newa,newb);
 return newSum;
 }
 public String toString()
 {
 String result;
 result=Double.toString(a)+" + "+Double.toString(b)+"i";
 return result;
 }

 }

public class ComplexDriver
{
 public static void main(String[]args)

 10

 {
 Complex Complex_1=new Complex(10,20);
 Complex Complex_2=new Complex(15,3);
 System.out.println("Complex 1: "+Complex_1);
 System.out.println("Complex 2: "+Complex_2);
 Complex_1.setRealPart(9);
 Complex_2.setImaginaryPart(7);
 System.out.println("\nComplex 1: "+Complex_1);
 System.out.println("Complex 2: "+Complex_2);

 Complex Addition=Complex_1.add(Complex_2);
 System.out.println("\nAddition: "+Addition);

 Complex_1.addOnto(Complex_2);
 System.out.println("\nComplex 1: "+Complex_1);

 System.out.println("\nThe Conjuge of Complex 1: "+
Complex_1.Conjugate());
 }
}

